Face and Hand Gesture Recognition for Physical Impairment People Using Nn-classification

نویسندگان

  • S. Rajeshwari
  • R. Neela
چکیده

Physically disabled and mentally challenged people are an important part of the society that has not yet received the same opportunities as others in their inclusion in the Information Society. Therefore, it is necessary to develop easily accessible systems for computers to achieve their inclusion within the new technologies. The paper presents a method whose objective is to draw disabled people nearer to new technologies. It presents a vision-based user interface designed to achieve computer accessibility for disabled users with motor impairments. The interface automatically finds the user’s face and tracks it through time to recognize gestures within the face region in real time and also implement vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of the paper is to develop robust and efficient hand segmentation algorithm where three algorithms for hand segmentation using different color spaces with required thresholds have were utilized. Hand tracking and segmentation algorithm is found to be most efficient to handle the challenges of vision based system such as skin color detection, complex background removal and variable lighting condition. Noise may contain, sometime, in the segmented image due to dynamic background. Tracking algorithm has developed and applied on the segmented hand contour for removal of unwanted background noise.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

Face Recognition by Cognitive Discriminant Features

Face recognition is still an active pattern analysis topic. Faces have already been treated as objects or textures, but human face recognition system takes a different approach in face recognition. People refer to faces by their most discriminant features. People usually describe faces in sentences like ``She's snub-nosed'' or ``he's got long nose'' or ``he's got round eyes'' and so like. These...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

Hand Gestures Classification with Multi-Core DTW

Classifications of several gesture types are very helpful in several applications. This paper tries to address fast classifications of hand gestures using DTW over multi-core simple processors. We presented a methodology to distribute templates over multi-cores and then allow parallel execution of the classification. The results were presented to voting algorithm in which the majority vote was ...

متن کامل

A Comparative Study of Gender and Age Classification in Speech Signals

Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017